Class---B.Sc. Part III

Subject---Chemistry

Paper---VI

Dr. Kumud Kumari

H. D. Jain College, Ara

COMPERATIVE CHEMISTRY OF CHROMIUM, MOLYBDENUM AND TUNGSTEN: OXIDATION STATES:

The ground state of Chromium and Molybdenum are d^5s^1 , with stable half- filled configuration, whilst Tungsten has a d^4s^2 arrangement. From the electronic structure Cr and Mo have (+I) to (+VI) whereas W have (+II) to (+VI) oxidation states. Cr. (+II) is reducing, Cr((+III) is the most stable and important and Cr(+IV) is strongly oxidising. The stable states for Mo and W are (+VI) though Mo (+V) and W(+V) are stable in water. Cr(+VI) is strongly oxidising whereas Mo(+VI) and W (+VI) are stable. SimilarlyCr(+III) are very stable but Mo(+III) and W(+III) are strongly reducing. This property is usual as we go down a group, the higher oxidation state become more stable and the lower oxidation states become less stable. The Compounds of all the three metals are given below:

(+11)	(+111)	(+IV)	(+V)	(+VI)
	Cr ₂ O ₃	CrO ₂		CrO ₃
		MoO ₂	Mo ₂ O ₅	MoO ₃
		WO ₂		WO ₃
CrF ₂	CrF ₃	CrF ₄	CrF ₅	
CrCl ₂	CrCl ₃	CrCl ₄		
CrBr ₂	CrBr ₃	CrBr ₄		
Crl ₂	Crl ₃	Crl ₄		
	MoF ₃	MoF ₄	MoF ₅	MoF ₆

MoCl ₂ Mol ₂	MoCl ₃ Mol ₃	MoCl ₄	MoCl ₅	
		WF ₄	WF ₅	WF ₆
WCI ₂	WCl ₃	WCI ₄	WCI ₅	WCI ₆
WBr ₂	WBr ₃	WBr ₄	WBr ₅	WBr ₆
WI ₂	WI ₃			***

(+IV) State:

A limited number of Cr(+IV) compounds are known. These are very strong oxidising agents, they are $(CrO_4)^{-2}$, dichromate (Cr_2O_7) , chromium trioxide (CrO_3) , oxohalides CrO_3X^- , CrO_2X_2 , $(X=F,CI,Br\ or\ I\)\ CrOX_4\ (X=F\ or\ CI)\ and\ CrF_6\ .$

 MoO_3 and WO_3 are formed. They are acidic and not attacked by acid except HF, but they are dissolved in NaOH forming $MoO_4{}^{2-}$, and $WO_4{}^{2-}$ ions. The oxides of Mo and W differ with of chromium in several ways:

- i)They have almost no oxidising properties.
- ii)They are insoluble in water.
- iii)Their melting point is much higher $Cro_3 = 197^{\circ}C$, $MoO_3 = 795^{\circ}C$ and $WO_3 = 1473^{\circ}C$.
- iv) Their colour and structure are different.

(+V) State:

There are few Cr(+V) compounds are known, they are unstable and decompose to Cr(+III) and Cr(+VI) compounds. Examples are CrF₅, K₃CrO₈

MoF₅ has a tetrameric structure of four octahedra joined into a ring .MO₂Cl₁₀ is also known compound. Tungsten have WX₅ (X= F, Cl, Br) compounds.

(+IV) State:

Chromium (+IV) compounds are very rare . CrF_4 , CrO_2 , $CrOF_2$ is known compound . CrO_2 is black in colour and has some metallic conductivity. It is also ferromagnetic and is widely used to mack high quality magnetic recording tapes.

MoO₂ and WO₂ are well known compounds.

(+III) State:

(+III) Oxidation state of chromium is the most important and most stable compound of chromium. These compounds are very stable in an acidic solution but it is easily oxidised to (+VI) state in alkaline solution. Cr₂O₃ is a green solid which is used as a pigment. All the anhydrous CrX₃ halides are known. Cr³⁺ ions form an enormous number and variety of complexes.

Mo³⁺ andW³⁺ do not exist as oxides, but all halides i. e MoX₃ (X= F, Cl, Br or I) are known except WF₃. These compounds do not contain simple ions. Mo(+III) are fairly stable, but slowly oxidised in air and hydrolysed in water. They form octahedral complexes with halide ion in solution.

(+II) State:

Cr(+II) compounds are well known $[Cr(H_2O)_6]^{2+}$ ion is sky blue coloured and one of the strongest reducing agents known in aqueous solution. Cr(+II) ion may stabilize by forming complex compounds.

 CrX_2 (X = F, Cl, Br or I) are well known compounds. Mo and W do not form difluorides but MX_2 (Cl, Br and I) are known. They are usually made by reduction or thermal decomposition) of higher halides. They do not exist in simple ion but form cluster compounds.

(+I) States:

The oxidation state (+I) expected for the atoms with a d⁵s¹ configuration is very uncommon. Trisdipyridyl Chromium (I) perchlorate [Cr(dipyridyl)₃] +Clo⁻ is known Mo and W form sandwich type structures.

Zero State, (-I) and(-II) state

The zero oxidation arises in metal carbonyl such as $M(CO)_6$, where the δ – bonding electrons are donated by the CO group to the meta and strong d_{π} - p_{π} back bonding occurs from the filled metal orbitals.